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Previous attempts to derive the homoleneous closed form solution to the problem
of the dynamic motion of a zero bending rigidity cylinder in a viscous stream

have expressed the solution as an infinite series involving Bessel functions of

complex argument and order, which are often impractical to evaluate because of

their complexity. Moreover, when these solutions are extended toj nhnoqrneous

sitqations, a harmonic time dependence is assumed that requires forcing the

system by an arbitrary time function using multiple solutions combined in the
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Fourier sense. This paper presents a general purpose numerical treatment
formulated to overcome these difficulties. The numerical approach is based
on finite difference schemes applied in conjunction with powerful numerical
ordinary differential equation methods. The theory is examined with respect
to consistency, stability, and convergence of these numerical procedures.
A numerical example is included to demonstrate the validity of the treatment.
Although an explicit boundary condition is absent from this study, a derived
boundary condition is demonstrated to be adequate.
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A NUMERICAL TREATMENT OF THE DYNAMIC MOTION OF A

ZERO BENDING RIGIDITY CYLINDER IN A VISCOUS STREAM

1. INTRODUCTION

Paidoussis1 worked out a solution to the dynamic motion problem.

Ortloff and Ives 2 studied a special case of the same problem and expressed

their solution in the form of an infinite series involving Gamma and Bessel

functions. Both the orders and the arguments of Bessel functions are

generally complex and can be large in magnitude. Furthermore, evaluation of a

Bessel function of complex order is laborious and time-consuming, and accuracy

cannot be assured. When the solution proposed by Ortloff and Ives is applied

to the nonhomogenous problem where the "upstream" end of the cylinder is

forced, a harmonic time dependence is assumed; this means that "forcing" the

system by an arbitrary time function will require multiple solutions combined

in the Fourier sense.

To overcome these difficulties, a general purpose numerical approach is

introduced. This approach discretizes n, , ntr , and n by backward and

central differences. This discretization brings the dynamic motion equation

into a system of second order ordinary differential equations. This system is

decomposed into a system of first order ordinary differential equations. A

feasible numerical ordinary differential equation method is then ubed to solve

this system with optimal efficiency.

There are many advantages to using a numerical method to solve the problem

of dynamic motion. The theory is well developed with respect to consistency,

stability, and convergence. Numerical methods are systematic to implement,

1
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and effective techniques can be used to accurately accelerate computations.

When a numerical approach is used, the laborious evaluation of special

functions is bypassed, maximizing accuracy and efficiency.

This report begins with a description of the dynamic motion problem and

the associated initial and boundary conditions. A numerical approach is

introduced and the supporting theory and mathematical formulation are

discussed. An example is given to demonstrate the validity of our numerical

solution to a well posed dynamic motion problem. The computer programs are

included in the appendix.

2
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2. POSED PROBLEMS

The motion of a wire suspended in a fluid stream, considered by Ortloff

and Ives, 2 can be described mathematically by the partial differential

equation,

4 2 22
El .L-. + (M + m) a~- + MU2 ay+ 2MU a4 2 2 atax

ax at ax

a _T M U2 (L-x) ']

SND at ax (2.1)

where

El = bending rigidity,

M = lateral virtual mass of fluid per unit length of wire accelerated by

the accelerating wire,

m = mass of the wire per unit length,

U = velocity of the free stream,

CT = drag coefficient due to pressure acting on the wire surface,

D = wire diameter,

L = total wire length, and

CN = drag coefficient due to shear forces acting on the wire surface.

3
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The special case of a zero bending rigidity (or an infinitely flexible)

cylinder is realized by setting El 0. To express the above equation in

dimensionless terms, use

= (t/L)U , = M/(M+m) , = xIL

S= LID, n=y/L

The above equation becomes

2--+ [ -1 CT (1 -] + (CT+C N)

2

N1 e 0. (2.2)

The associated initial boundary conditions are described by

n 0 = 0 (fixed end condition); (2.3)a

Inl is finite, = (bounded free end deflection); (2.3)b

n= nI () = 0 (prescribed initial deflection); (2.3)c

and

anl = 0, = 0 (zero initial velocity). (2.3)d

Ortloff and Ives solved the problem posed by equation (2.2) using

conditions described in equation (2.3). Their solution is expressed in terms

of Bessel functions.

4
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The initial boundary value problem, equation (2.3), for the partial

differential equation (2.2) is said to be well posed in the sense of

Hadamard3 if and only if its solution exists, is unique, and depends

continuously on the data assigned. After the problem is formulated using

finite difference and ordinary differential equations, it will be seen that

the problem is well posed. We will seek a unique solution by means of the

numerical techniques presented in the next section. When the boundary

conditions become uncertain, there is not enough information available to

solve equation (2.2); we term this problem ill posed. However, a derived

boundary condition is developed, which is shown to be adequate for our problem.

3. THE NUMERICAL TREATMENT

In search for a general purpose, accurate solution to the well posed

problem (2.2), subject to conditions described in equation (2.3), the method

of attack is to discretize n , nr , and n by central and backward finite

differences and then to transform equation (2.2) into a system of second order

ordinary differential equations (known as the method of lines4 ). We

discovered that Generalized Adams Bashforth (GAB) methods 5'6 can be used to

solve this system efficiently.

Expressing equation (2.2) in short form and writing u as n gives

ur + a() u( + but + 2o(u) + cur =O, (3.1)

5
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where

a() : B [I -ACl(1-)],

b 2(T + CN)CBs, and~c A SC~c

C 2 Te

3.1 FINITE DIFFERENCE DISCRETIZATION

Applying the second order central and backward finite difference

discretization to equation (3.1) in the k direction, we obtain

(u) + a(m Um+l - 2um + Urm-1 + b (u - l)
rn77 m h2  h (Ur M1 )

+ 2 (ur - Um1 )7  + C(Um)7 = ' (3.2)

where h = &E for index m = 1, 2,

A simplification of equation (3.2) gives

(U m) 77 _ + ' c)(Um)7 h (Um I ) 7 h2
n h +h + ah 2  Um+1

+[b 2a(tm)] u ( a( m) u 0
h h2 h h 2 /M 1  (3.3)

6
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Equation (3.3) is a difference equation, representing a system of second

order ordinary differential equations and is an approximate equation to

equation (2.2).

3.1.1 Consistency

Before we apply the GAB method to equation (3.3), let us examine the

consistency of our finite difference operator fh [u;h]. First, expressing

equation (2.2) in true operator form, we obtain

[u] : + a(t) a_ + b

2+ a + C u=0

2.-) r=O. (3.4)

Next, expanding um+1 and um_ 1 in powers of h and keeping the first two

principal terms, we obtain

h2

Um+ = um + h (um)' + (Um + ... ,and

h2umi = um - h(um)' + (Um)"

Therefore,

un+I - 2urn + um-1
h2  - m m (3.5)

7
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and

Um -h u -1- (ur) h 2 (um)

h m~~ ~(3.6)

Substituting the power expansions of um+I and UmI into equation (3.2)

and using equations (3.5) and (3.6), we find that equation (3.2) is then

expressed in a difference operator form,

2 [ 2 1 L uO
Xh[U;h] = a * a(k) [ +, -2a~

-b[ 1+2B - (3.7)

£[u] - £h [u;h]

/ 2 24 2 h2  2( a()T b _  + 2o 2_ -- U.

It is seen that

Im (.C[u] -Xh [u;h]) * 0.

Therefore, the difference operator is consistent with the true operator in the

sense of Keller7. Thus, the consistency requirement is established.

8
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Now that we have a consistent difference operator, we seek stable

numerical ordinary differential equation methods to solve equation (3.2).

3.2 ORDINARY DIFFERENTIAL EQUATION SOLUTION

To seek the solution to equation (3.2), refer to equation (3.3).

Write au Wm

a T

a um = (Is + ) wm  + sWm-i
--- m I /

a(m  [ 2a u~ + a( m _
h2- -- m+ l ] m h2 m' (3.8)

Equation (3.8) is a set of equations that represent equation (3.3) 
as a

system of first order ordinary differential equations. For illustration,

using m = 1, 2, we can obtain

duI =

dT

dw- - +- c + 1  w0  - u - b 2a(-J+ u 1 -
dr h h 2 2 h 2 0

h hh

du 2  w2

9
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dw2B a() a~
2T rI 2(42) ~ 2) a~,

In matrix form, the equation becomes

du i  0 1 0 0 uI
Tr-

dwl - 2a( i)] - c) a(41) 0 wI1 _[ a71] 12o
d[h h + [g]

du2  0 0 0 1 u2

du h2F[b 2

dw2  a(E 2 ) 2w b () W

L d jh 2 Cj - (3.9)

where

= s b ( oY 0, a(42) T
Eg] -- o h h2  h o -

which is in the form

u' = A(g)u + g(g, r, u). (3.10)

The elements contained in the components of the g-vector have the following

meanings.

10
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U0 = top boundary fixed end condition: u0 = 0, = ;

WO = initial condition: u. = 0, r= 0; and

U3 = bottom boundary bounded free-end deflextion condition:

1u31 is finite at 4= 1.

The matrix elements, Aij, of matrix A can be determined by the following

setups in which we define Ai,i-j = 0 if i-j 0 for j = 1, 2, 3.

When index i is odd, Ai,i+ I = 1. When index i is even,

A
i,i-3 h h

A 2sAi,i-2 -h'

2a( ) b
ii-1 h2  h '

Ai, i  = _ -

where a() is evaluated at a(4), 1= i

Now, the problem is to select an effective numerical ordinary differential

equation method to solve equation (3.8). A close examination suggests that

the Generalized Adams-Bashforth (GAB) method offers an efficient solution. In

11
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the present application, because a low order GAB method can do the job, high

order GAB methods are not necessary; hence, first order GAB methods were

developed into computer programs in FORTRAN language. However, the program

package is flexible so that high order GAB methods can be incorporated when

required.

We introduce the first order GAB

u n = eAh un + ho1,0(Ah) g (3.11)

to solve equation (3.10), where

61,0 (Ah) = -(Ah) -I (I - e Ah). (3.12)

The theory with respect to consistency, stability, and convergence has

been very well developed for Nonlinear Multistep (NLMS) methods.8 The GAB

method is a member of the NLMS family. We summarize the theory below.

NLMS methods take the expression.

k Ah(k-i) k
i=O i i!O 'ki (Ah) gn+ i  (3.13)

3.2.1 Stability

The characteristic polynomial of NLMS is defined by

,NeAh irO Ii "  (3.14)

12
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Using the GAB method, the selection of ai is such that

ak - 1, *k-1 = -1. We see that the root of p(, ) has unity and is

simple; therefure, method (3.11) is stable.

3.2.2 Consistency

The GAB method, equation (3.14) satisfies the consistency

condition

k k
hO O e Ah(ki)u - hio 0 ki(Ah)gn+i = 0(3.15)

for k = 1, 1k = 1 and ak_1 = -1. Therefore, GAB method is consistent.

3.2.3 Convergence

According to the convergence theorem of NLMS methods, "A stable and

consistent NLMS method is convergent." Therefore the GAB method applied to

problem (3.10) is a convergent method.

4. BOUNDARY CONDITIONS

In real applications, at t= 1, the bounded free end deflexion boundary

condition is expected to be such that n(1,T) is finite. However, the

appropriate function n(1,T) to be used for the boundary condition appears

uncertain in reality. This lack of information defines problem (2.2) as an

ill posed problem. For general partial differential equations, it is always

difficult to formulate correct conditions leading to a well posed problem.

Problems may look reasonable, yet cannot be solved. 3 It is hoped that the

13
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bounded free end deflexion boundary condition may be obtained through

experimentation, but the exact mathematical expression for n(1,r) must still

be worked out. We will attempt to change the ill posed problem to a well

posed one so that a solution exists and can be solved by the njmerical

techniques we ha - developed.

In the theory of second order partial differential equations there exists

a class of well posed problems, such as the Cauchy problem for wave equations,

the Dirichlet condition for Laplace equations, and the mixed initial boundary

value problem for heat equations. Our first step is to examine the most

general boundary conditions. Let uN denote the normal derivative. The

first boundary value problem of the Dirichlet type indicates

u = f (4.1)

on the boundary. The second boundary value problem of the Neumann type

indicates

uN = f (4.2)

on the boundary. The third boundary value problem of the mixed type indicates

uN + Qu = f (4.3)

14
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on the boundary. Note that the third boundary value problem is well posed

only for the restricted choice of a. We will assume that the free end

deflexion boundary conditior takes the expression

XuN + au = f. (4.4)

When

= 0, a = 1, (4.4) reduces to (4.1);

x = 1, = 0, (4.4) reduces to (4.2); and

= 1, a arbitrary, (4.4) reduces to (4.3).

In our application, as given by the numerical example in the next section,

( n( ,1) , = 0, = i gives

= f(g, ) and jf(1,7) is finite. This gives Ortloff's and Ives'

bounded free end deflexion boundary condition.

The procedure to be followed here for determining a free end boundary

condition is to derive an approximate boundary condition and then to use that

boundary condition to compare the solution with a direct application of the

Ortloff and Ives solution.2 We develop a form of the boundary condition for

the second order partial differential equation by following the approach used

15

.... .. = -"__ _ _ _ _ _ _ _ _ _ _ _ _ T_ _ _ _ __... .. .. _ _



TR 6343A

by Paidoussis for his fourth order partial differential equation; that is, by

integrating the transverse momentum equation over a short tapered end which is

attached to the free end in order to generate the required boundary

condition. Paidoussis assumed that the cross sectional area tapers smoothly

from S to zero in a distance (1) sufficiently short that the forces acting on

the tapered end can be lumped and considered in appropriate boundary

conditions. For our present problem the boundary condition is obtained from

SL L L

+ dx + Fdx- f (T (x.I) dx

.- L-

L

+ M(X) dx= 0

L-Z 1(4.5)

where the parts of the equation express rate of change of fluid momentum,

hydrodynamic forces, and cylinder inertia, respectively, and where f is a

factor introduced by Paidoussis to account for the intractable flow conditions

at the free end and V is the transverse velocity of the fluid relative to the

cylinder. Therefore,

V at ax, (4.6)

16
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T(x) T(L) +7 (- )U2.- (L-x); (4.8)

and T(L) is a consequence of form drag at the free end.

An important assumption necessary to perform the integration is that the

length of the tapered section (L) is small enough 
that the lateral velocity

(V) may be considered constant over 1. W'e find

UC NM I P + U IM ZCTA (.)

- T(L)I 2~ + 1 + 0 (12) = 0

ax at(49

for x L, all t.

After nondimension of this equation as before and neglecting terms of

order (12) and I , we have

f+CN(Il L r+ CN + C TIl
Tf 3w-r. r -) rT~] V (4.10)

fore 1, all T

17
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On physical grounds it is reasonable to neglect CT relative to

CN/4, 9 making the final boundary condition

+ -n = 0 for & 1, all i-,
at a-? (4.11)

which amounts to a "radiation condition"; that is, no reflected energy

exists. In the following sections, we refer to boundary condition (4.11) as

Kennedy boundary condition.

5. A NUMERICAL EXAMPLE

The test example is obtained through linearization of a fourth order

nonlinear cable equation,10 which is given by

m + M !- + U Y = a (T5.1+)
mt -(Lax) ax(5.1)

where m, M, U take the same definitions as given in section 2. T, CN are

defined as

T
T -F (L - X), (5.2)

T, CT D U2 L, (5.3)

18
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CT =2 2 T, and (5.4)

CN 2 f CNU) (5.5)

where CN and CT satisfy the definitions given in section 2.

Assuming a and a commute, expanding equation (5.1) gives
ax it

2 2 2 2a aT!2+Y LaT~ M
mL+ M a Y+ 2U2- + = T + -+U2 2 atax ax2 axa2  N a (5.6)

at a 2, axt

Performing aT and using definitions (5.2) through (5.6), we get
ax

at ax [U427cT T-Lax] + ~(T + N) + 2U aat 7 N 0.
(5.7)

Equation (5.7) is the same as Ortloff's equation (2.1) before

nondimensional ization.
2

Select

D = is,

M - m - 0.00273

U - 15 ftfsec

19
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L = 2000 ft

CT = 1.8
73-

CN = 1.1259.

Then,

= 48,000

B= 1
2.

The solution to equation (5.7) is expressed by

y(t, x) = eiw t J (x),

where Y is approximately 21.89 and J (x) initial values are calculated using a
10

UNIVAC 1108 Bessel function subroutine.

The fixed end boundary condition initially is zero. The free end boundary

condition uses n(1,T) = eiWTj(Y1).

This problem was tested again using Kennedy's free end boundary

condition. Results are surprisingly in agreement with the known solution.

The test results seem to show that the Kennedy free end boundary condition is

adequate. Results are presented in graphic form. Two sets of graphs are

given: one displays In(gT)l versus r, the other displays the real In(,r)I

versus r. Both plots are constructed at { = 0.2, 0.8.

20



TR 6343 A
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6. CONCLUSIONS

A numerical solution to the dynamic motion of a zero bending rigidity

cylinder in a viscous stream has been introduced. The numerical procedures

developed to obtain the solution are theoretically convergent and

computationally accurate.

For given appropriate boundary conditions and accurate initial values,

this model will produce an accurate unique solution. For uncertain boundary

conditions, this model can be used as a tool to study the boundary effects and

possible to construct the ad hoc boundary conditions.

22
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APPENDIX

COMPUTER PROGRAMS STRUCTURE AND COMPUTER LISTING

COMPUTER PROGRAM STRUCTURE

MAIN

LSTART
DIFEQ

L NLMS

INEcGJR

GL BC

PADE

L INVERT

L OGJR

25
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ACRONYMS

MAIN main program which controls the setup of inputs and the preparation of

outputs

START supplies the initial values

DIFEQ controls the present ?-step and calls for NLMS(GAB) method

NLMS 1st order Generalized Adams-Bashforth method

INVER calls for complex matrix inversion

CGJR complex matrix inversion using Gauss-Jorden reduction

GFN calculates the g-vector

BC fixed end and free end boundary conditions

PADE a rational function approximation for matrix exponentials

INVERT calls for double precision matrix inversion

DGJR double precision matrix inversion using Gauss-Jorden reduction

The user needs to deal with MAIN, START, GFN, and BC. The user need not

be concerned with DIFEQ, NLMS, INVER, INVERT, CGJR, and DGJR.

26
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COMPUTER PROGRAM LISTING

MAI N
COfMMON pErP v pcT~rr-.. P' Ef ,ITA !,FQ PA9F , P .C, PD D Z IE N D
COMMON 13 i T)

COMPl EX A!YYEC9YE!X~OC!SVvXC
~ *** TIS P'ACKA(3E SOI...VfTI~ A 2ND ORDER F'4D.E, By THE METHOD OF' LINES AN

GENERAL IZED' ADAMS--E4A HFORTH- METHODS
C**~ REr7FRFNC..F.: r)RTI..OF:-F ANtI 1fl

** INPUT PARAMETERS HAVE THE F0LLOWING DEFINITIONS
***N NUMBIER OF 2ND. ORDER ODE
***A* MAXIMUM TAO

C ***TTNT EVERY TAO iNTPRVAI... TO BE PRJNTED our
F.** *, Y T .- T THIS XT THrE F ',.TPIlJT IS PFPiIFUSTED

***IP =p FREOUENCYP NOINDrMFENSTONA.. OMEGA
C 'r RN T-1 = BOUINDARY COND)ITION INDICATOR
C = .1 BULJLT--IN KiP:NNEDY BOU.NDARY CONITTION
C = 2 USER-SU.PPI.TED B4OUNDARY CONDITION
C** PREPS = EP'SILON

c ** PcT = C SUB~ T
C Ic**PCN = C c.SU B N
C ***PEIETA = BETA
C ***H = TAO STEP, SIZE
C ***READ INPUTS HERE

REAP(5p*) NyTMAXvTTNTpPXIpFQIEIND
RFAL'5*) PEP~'..PCT.PFCNyPBETAH
N=2*(N-1.)
DJZ=- I .0/ (FlOAT(N/2+1.))
PB=0.*5*PEETA*PCT*PEPS
PA=F'BETA* (1 *0-PB)
PD=0 .5*FPCN*PEP'S*P4ETA

C ***** TO SET-UP MATRIX A
DO 20 TIvN
DO 2.0 J=l.,N

20 A( Is'J)=CMPlLX(0.0r0*0)
IH= PCID Z

TBH=2 .*PEIETA/DZ
DGj=-(TP~H+P)
DO 28 I=I.,N
IF(I *GE. 4) GO TO 26
IF(I .EGo 2) GO TO 25

GO TO 20
25 J=1/2

X=PBETA* (1 .-. 5*PCT*PEPS* CI -J DZ))
A(TPTIi)=CMPLX(2.*X/(t'Z*DZ)-BtH,OO)
A(II)=CMPILX(E'G,O.0)
AC I,1+1 )=CMPL.XC-X/(E'Z*DZ) ,O.O)
GO TO 28

26 IF(MOD(I,2) *EQ. 0) GO TO 27
A( 1,I+1)=CMPLX( 1#.00)
GO TO 28

27
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fi ZNA

34 C ~ N IT I LVLESC

T +IN

O~ ~~ 41* F~' TSI YEWf

7 7 V 0 .". .

C2 L) NTCFr I4 E

X .LTt+

L L: D ." T X :Y Y' Z: 0" :"7 '" p E • T "E,'

RE T N'y NEW TOI

T' : • i: '-, '!:' T '. :

F , "' *' E- . C') GO TO ,

2:3 E 0,T0[G3 0

W'RITE,' 71 H ,
I FI TI, C-X H E15.'50'7 E ,15 . S/
-2 FORMAT XiPF8.1 OXYE 15* 0)-E1I 5.SE

( PRINT OUT XACT SOLUTION
: T H' I S RTIN IS FOR CEST EXhFLE G LY

i'LL START(N,TEACT-
-D 100 I=1,fN ,2
N'INz 1+ 1 7
,L Z =tN N* E'2
WRITE(52 ILZ, YNEW(I)

WRITE(5t3) EXACT,,I)
FORMAT(2 1XrE1.S,1OXvE1S./)

100 CONTINUE
IF('TX *GE. TMAX) STOP
(G0 TO 10
E T t , ,

28
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NLMS
s~ PRI TNENLMS(H.4pyNrYN, FSPSAUF)

fCO0M MOCN !:E PS !PCT, -:1N fl 1i FJA F 0 f PA~ FY P F'(:' PD Z f: I FNED
PARAMETFR KM:-:ISB
COMMON A(NMvNM),T(3)
DIMENSION AH-(NMN M) PEAHI(KMYNM) ,'NM)
rDIMENSION t(MNM J4T(MNM
DIMENSION Y(2yKM) YN(NKM)
El I: M FN S 0 ON F E ( KM P NM) AI (NKM N .M)
COMPLEX A gAt.l, EAH )4vF,pt ,iv NIT Y '(YN SAVE
COMPL EX FEYA1
D AT A I ND/ 0/
TECIND.* GT1. 0) GO TO 14
DO 2 T:I , N

DO1 2 .IrlN
.2 AH (:I, J )=H*A ( I v.J)

IF.N-fl 7P j 97

(A AA!, N: P A i(11.
7I C . INVER&(Al,~A

9 1 F(N t ) I. ( vI':.

Of0 TO 14
0O CA I. PA PE F. A H N

.I N' i N Ci) 4. -1
1 4 I F 0s 1. K 0T 1 0

D' 6.IJ:1. N
p l (I. !,J=CM P;.X(00,000)
IJNI T ('r .04) ;CMI:'. X ( 0 , 0!, 0. 0)

6 f7ONTTIUE
1 LINIrT( TI T ):=.MFL.X( 1.00.0)

t00 CON TI NU E

C * NONI INFAR MULTIST E STARTS HF HF. *
C * E(PfNNI NO. SECTION LiVS JNr,IA! (lCATh O*CN*

132 Yl(N-" n=UMPL-X(C0,-0 -0)
I F (: IS. (3T., 1 G 0 T 0 1. 31

T,0 10 A =JI. ~N

103 F]( T.- Fl-EA H (I,J , 1NT Tf

* IST ORDEIR GAB &AE~PI1.
* 00 l OOP 105 CALJ71 *T" -*H(
* LOOP 108 OR 110 COMPUITES FIrNAL. Y(N+1.)

riO n 0A '(=e1,N

F47' T I) F'Ptt

41 t'iY I Y-I F,.. A.

r T; lO I F- N
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DO 9 I=1,N
DO 10 J=1,N

C(I~PJ)=AA(IPJ)*H/2*0
PP( I J)=0.DO

10 CONTINUE
C(I1,1)=C(I1,1)+1 .DO

9 CONTINUE
DO 12 I=1,N
DO 13 J=1,N
DO 14 K=1.N
PP(IJ)=PF( IPJ)+E4(IPK)*C(I ,J)

14 CONTINUE
13 CONTINUE
12 CONTINUE

IF(M *EQ. 0) 0O TO 40
C
C * NORM(AH).GT.(.1)v EXP(A) =EXP(A/2**M)**(2**M)*
c

DO 24 I=1,N
DO 25 J1,PN
D(IpJ)=0.DO

25 CONTINUE
24 CONTINUJE

DO 36 K1,pM
DO 27 I=IPN
DO 28 J=ipN
DO 29 L=1,N
B( I J)=B( I J)+PP( I ,L)*PP(LPJ)

29 CONTINUE
28 CONTINUE
27 CONTINUE

DO 31 I=1,N
DO 32 J=1,N
EB=B(IPJ)
P(IPJ)=CMPLX(B',0.0)
F(Iv,J)=0.Do

32 CONTINUE
31 CONTINUE
36 CONTINUE

H=HAVE
RE TUJRN

20 H=fi/2#0
M= M+ 1
DO 54 I=iPN
DO 55 J=IYN

55 CONTINUJE
54 CONTINUE

GO TO 30
40 H=HAVE

RETURN
END

30
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START
SUB4ROUTINE START(NTYZERO)
COMMON PEPSPCTPCNPBETAFO~PAPPPCPDZIBN'
COMPLEX YZERO (1)
DIMENSION T(l)

C ****** USER SHALL REVISE THIS PORTION TO INCORPORATE HIS INITIAL VALUE

s
C *........YZERO(I) CONTAINS THE FUNCTION

C *........YZERO(I+1) CONTAINS THE DERIVATIVE
DO 29 LP=1,NY2
DLZ=EiZ*(LP+I )/2
IF(LPEQ. 1) YZERO(LP)=CEXP(CMPLX(OOFQ*T( 1)))

* *CMPLX( ,99546739,-,73021506E-01)
IF(LP.EO*3) YZERO(LP)=CEXF(CMPL.X(0,0,FQI*T( 1)))

* *CMFL-X( .98602435v-. 14547502)
IF(LP.EQ.5) YZERO(LP)=CEXP(CMPL.X(0.0,FQ*T( 1)))

* *CMFLX( ,97172089p-.21705468)
IF(LP.EO.7) YZERO(LP).CEXP(CMPLX(0.0,FQ*T(1)))

* *CMPLX(.96262427p-. 28745766)
YZERO(LF'+I)=YZERO(.-P)*CMPLX(0,0,FQ)

29 CONTINUE
RETURN
ENDE

GFN

C ~***.THIE HANDILES THE G .!E:-TOR
* t * G !,ECTOR CONTA INS BOUNDiARy INFORMNAT ION

1;' E N F10N T ;1)
jiT A F ZE "0 0N E,.1 -1592 653 5 0~ 0,1 0-

lie I I=,FN
1',I =ChF'L; (0 0. 0)-

iU 0*t FI.RST ARGUMENT Op CALLS FOR FIXED ENID COiNDITION
,C0(LL EC(0. NHtT,)YrSAiVEtWZSU;RF)

-2>2.*FETA*WJZEiz+PCDZG()/Z *SURF

#t* 4 FIRST AR16U1)ENT 1, CALLS FOR FREE-END, CCOri'iTio~q
CALL P C(lvNHpTpVSAVYWZYBOTT)

(3(N.' C ?F' L X X,0. 0)*B OT T

RET U RN

31
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INVERT
SUBROUTINE INVERT(A,N,ANS)

c
C * MATRIX INVERSION SUBROUTINE, CALLED BY PADE OR NLMS

C * A CONTAINS THE ORIGINAL ELEMENTS AND REMAINS UNALTERED

C * ANS CONTAINS THE A**(-1)
C * THIS SET-UP IS USING UNIVAC 1108 MATHPK EXISTING DOUBLE
C * PRECISION GAUSS-JORDAN REDUCTION
C * THIS PROGRAM IS REPLACEABLE BY THE USER
C

DOUBLE PRECISION A(18,18),ANS(18,18),V(2)
DIMENSION JC(18)
DATA NR/18/,NC/18/
V(1)=I.DO
DO 1 I=IN
DO 1 J=IN

1 ANS(I,J)=A(IJ)
CALL DGJR(ANSNRNC,N,N,MDEXJCV)
IF(MDEX .EQ. 1) GO TO 10
RETURN

10 WRITE (4,2)
2 FORMAT(3X,22HMATRIX INVERSION ERROR)
RETURN
END

INVER

SUBROUTINE INVER(A,N,ANS)
PARAMETER NDIM=18
COMPLEX A(NDIMNDIM),ANS(NIM,NDIM),V(2)
DIMENSION JC(NDIM)
DATA NR/NDIM/,NC/NDIM/
V(:.)=CMPLX(1.0,0.O)
DO I =I,N
DO I J=I,N

1 ANS(I,J)=A(I,J)
CALL CGJR(ANSNCNR,N,N,MDEXJCV)
IF(MDEX .EO. 1) GO TO 10
RETURN

10 WRITE (4.2)
2 FORMAT(3X,:I1. HMAT INV ERR)

RETURN
END

32
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DGJR
SUBROUTINE DGJ)R(ANCNRNMCPMDEXPJCPY)
DIMENSION JC(N)PV(2)
DIMENSION A(NRPNC)
DOUBLE PRECISION AYVPX~FDLOG
IWV( 1)
M=1

L=N+(MC-N)*( IW/4)
KD=2- MOti(IW/2p2)
IF(KD.E0.1) V(2)=0.

GO TO (5v20)pKI
5 DO 10 I=1,N

10 JC(I)=1

20 DO 91 I=1,N

21 M=I
22 IF (I.EQN) GO TO 60

DO 30 .)=IPN
IF (XGTABS(A(,I))) GO TO 30
X=ABS(A(,Jyl))
K=J

30 CONTINUE
IF(K.EQ.I) GO TO 60
S=-S
V( 1)=-V( 1)
GO TO (35p40)yKT

35 MU=JC(I)
JC(I )=JC(K)
JC (K)=M(.J

40 DO 50 J=MPL
X=A (I P,))
A( IPJ):A(KJ)

50 A(KPJ)=X
60 IF (ABS(A(Ipl))*GT*0.) GO TO ;YO

IF(KD.EQ.1) V(1)=0.
,.)C(I 1 )=1-1
RETURN

70 GO TO (7ip72)YKD
71 IF(A(IPT).LT.0.) S-S

V(2)=V(2) + DLOG(ABS(A(IPI)))
72 X=A(IPT)

A ( I I )=I1
DO 80 J=MPL
A( I ,)=A( I..J)/X
CALI. ERRTST(721pMDEX)
TF(MDEX.EQ0.1.) GO TO 150

a80 CONTINUE

33



TR 6343A'

DO 91 Ktl PN
IF (KEQI) G0 TO 91
X=A(K, I)
A(KPI )0.
DO 90 J =MYL

CALL. ERRTST(72,MIEX)
IF(MDEX.EQ,1) GO TO 150

90 CONTINUE
91 CONTINUE

GO TO (95j,140)YKI
95 DO 130 J=1,N

IF(JC(J).EO.J) GO TO 130

JJ=J+1
DiO 100 I=JJPN
IF(JC(I),EG.J) GO TO 110

100 CONTINUE
110 JC( I)J,.C(J)

DO 120 K=IPN
X=A(K, I)
A(K I)=A(KPJ)

120 A(Kv,)=X
130 CONTINUE
140 JC(1)=N

RETURN
150 JC(I)1I-I

IF(KD.EQ.1) V(1)=S
RETURN
ENDE

34
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CGJ R
SUBROUTINE CGJR(AYNCPNRPNPMC, IFLPJCPV)
LIMENSION JC(l)
COMPLEX CLOGPVPXCFA(ISP18)
COMPLEX 7
INTEGER*2 NERR
NERR=K72
IFL=0
I W=V
V=(0, ,'.)
IBIT=0
M-1
L-N+(MC-N)*(IW/4)
KD=2-MOD( IW/2p2)
KI=2-MOD(IWY2)
GO TO (5P20)PKI

5 DiO 10 I=1,N
10 JC(.T)=l
20 DlO 91 I=lpN

GO TO (22p21) ,KI
21 M=I
22 IF (I4EQ.N) GO TO 60

DO 30 J=IPN
ANORM=ABS(REAL-(A(JPI)))+AEIS(AIMAG(A(J,I)))
IF(X*GTtANORM) GO TO 30
X=A NORM
K=J

30 CONTINUE
IF(K.EQ.I) GO TO 60
IBIT=IBIT+1
GO TO (35P40)PKI

35 MIJ=J.C (I)
JC ( I ) =,JC(K)
JC (K) =M.)

40 riO 50 .J=M L.
XC=A(Ir,J)
A ( I rJ ) =A (K , J)

50 A (K ,,J):=XC
60 ANORM=AEBS(REAL(A(IPI)) )+ABS(AIMAG(A(IPI)))

IF(ANORM.GT.0) GO TO 70
V=(0, ,.)
JC(1.)=I-1
RETURN

35
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70 GO TO (7lp72)pK'
71 V=V+Cl.OG(A(IvI))

Z=CLOG (A(I p I)
72 XC=A(1I)

DO 80 J=MYL
A( IJ)=A(I,)/XC
CALL ERRTST (NERRP IFL)
rF(rFL.EQ.1) GO TO 150

80 CONTINUE
DO 91 K=lpN
IF (K.EQ.1) 00 TO 91
XC=A(Kil)
A(I(,I)=(0. ,0.)
DO 90 J =MPL
A(KYJ)-A(KPJ)-XC*A( I J)
CALL ERRTST(NERRPIFL)
LF(IFL.EQ41) G0 TO 150

90 CONTINUE
91 CONTINUE

GO TO (95P,140)tKI
95 DO 130 )=IPN

IF (.JC(J).EG.J) 00 TO 130
JJ=J+1
DO 100 r=JJPN
IF (JC I),EQ.J) G0 TO 110

100 CONTINUE
110 JC(I)=JC(J)

DO 120 K=IYN
XC=A(KPI)

120 A(KvuJ>=XC
'130 CONTINVE
140 JC( I)-N

V=V+(.v3.141592653>*CMPL-X(FL-OAT(MOE'(TBTT,2)),0.)
RETURN

RETURN
END

36
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BC

7 ,, . 2 - T T
-, 7 : F 1 ..

'.C T P C: - E T A F ' F .C F, y . 7

I" i,~ r,4 . ; ,!4 "", :

*r . ,,. .~ LL(>

- _ - d. . .. .

t, .- :=I~i .. y k ..

ETT UT 0

i:~~~~~ % !7] r ;

R E I 'U F:i
,, :,., USER SUF'L *.ED ARY CONDITION
" .N ,T i NUF'E

JL0.0 FQ*T 1)): :C MF!LX F 3 62?S617 Z Q

- ' F' ,, I

- TI NmF,{
' OTNUE

F'PET d E 10) DD TO 3I

F; -T U R fI'
. 1, + PC T ,+ PE FS ,:F E'ET A 1E ) / (2. -'I1 *.-:' F=ET ;.

X-,'CMF'LX 1 ,"\YZ, C .0) ( C'M( FLX 1. +XYZ 0.0).:y (1,N-1 iY -3
F'I E T U R N
E N D
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DIFEQ
SUBROUTINE DIFEQ(HPNPTMAXPYPYZEROANORMYNPSAVE)
COMMON PEPSPCTPPCNPE4ETAFGPAPPBPCPDDZIBND
COMMON A(18,18),T(3)
COMPLEX Y(2,18) ,YN(18) YYOLD(2,18) ,YZERO(18) ,ASAVE
DO 40 I=1?N

40 Y(1PI)=YZERO(I)
IH=0
TZERG=T( 1)

60 TEA=T(1)+H
IF(TEA.GT.TMAX) H=TMAX--T(:L)
IF(TEA.GT.TMAX) IH=0
IF(TEA.GT.TMAX) GO TO 60
I H = IH+ 1
IF(IH .GEo 32767) IH=2
T(2)=T(1 )+H
IMP =2
DO 62 J=1,IMP
DO 62 I=IPN

62 YOLD(,JpI)=Y(,J,I)
CALL NLMS(HPYOLE'PNYYNYIHPSAVE)

59 t'O 66 I=1,N
Y(2 I )=YN( I)

66 YOLrI(2vI)=YN(I)

* RESULTS Y(TEA) IN YN(I) AND Y(2,I)*

ANORM= TEA
DO 85 TIN

YZERO( I)=Y( 1,1)
85 CONTINUE

T(I)=T(2)
TZERO=T (:1.)
IF(ABS(TEA-TMAX). .IE. (.* E-5)) RETURN
GO TO 60
ENDE

38
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PADE
SUBROUTINE PADE(ApHrPN)

C ***A RATIONAL APPROXIMATION OF MATRIX EXFONENTIALS
C ** DOUIBI E PRECISION IS NEEDED FOR REcOUIREtI ACCURACY

PARAMETER NM=18
COMPLEX A(NMYNM)PP(NMPNM)
DOLUBLE PRECISION AA(NMNM) ,PP(NMNM) ,B(NMNM) ,C(NMNM) PHAVE
DOUBLE PRECISION CC(NM) ,COLrXNORM
HAVE=H
DO 2 I=IrN

DO 1 J=1,N
B( I ,..)=0.DO
C(IY,J)=O.DO
PP (IFJ) =O. DO
AA(IJ)=DE4LE(REAL(A(IpJ)))

I CONTINUE
2 CONTITNUE

DO 17 I=1,N
COL=0.DO
DiO 16 J=lpN
COL=DMAXI(COLDABS(D4LE(REAL(A(IJ),')

16 CONTINUE
CC(TI)=COL

17 CONTINUE
XNORM=CC( 1)
DO 18 I=1,N
IF(XNORM *GT. CC(I)) GO TO 18
XNORM=CC(l)

18 CONTINUE
C
C * COLUMN NORM IS USED TO SEE WHETHER EXP(A) NEEDS REDUCTION *
C

M=O
30 IF(XNORM*H - 0.98) 3p20p20

C
C * XP(A)=(I-.5*A)**(-Il)*(I+.S*A)*

3 DO 6 *I-::1,N
DO 5 J=1,N

DO 4 K=1,N
PP( ~i v.I)=PP( 1 ,J)+AA( I K)*AA(KI(,J)

4 CONTINUE

COIP,):NT-A IUEJ H/

6 CNTNEN

CALL INVERT(CpNpB)

39/ 40

Reverse Blank
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